ADC_AnalogWatchdog

  ******************** (C) COPYRIGHT 2010 STMicroelectronics *******************
  * @file    ADC/AnalogWatchdog/readme.txt 
  * @author  MCD Application Team
  * @version V3.4.0
  * @date    10/15/2010
  * @brief   Description of the ADC analog watchdog example.
  ******************************************************************************
  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
  ******************************************************************************
   
Example Description

This example describes how to use the ADC analog watchdog to guard continuously an ADC channel. The ADC1 is configured to convert continuously ADC channel14. The analog watchdog is configured and enabled to guard a single regular channel. Each time the channel14 converted value exceeds programmed analog watchdog high threshold (value 0x0B00) or goes down analog watchdog low threshold (value 0x0300) an AWD interrupt is generated and the output pin connected to LED1 is toggled. The LED will bright as long as the AWD interrupt is generated which means that the converted value of regular ADC channel14 is outside the range limited by high and low analog watchdog thresholds. The ADC1 clock is set to 12 MHz on Value line devices and to 14 MHz on other devices.

Directory contents
Hardware and Software environment
How to use it ?

In order to make the program work, you must do the following :

Tip: You can tailor the provided project template to run this example, for more details please refer to "stm32f10x_stdperiph_lib_um.chm" user manual; select "Peripheral Examples" then follow the instructions provided in "How to proceed" section.

Note:
  • Low-density Value line devices are STM32F100xx microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
  • Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
  • Medium-density Value line devices are STM32F100xx microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
  • Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
  • High-density Value line devices are STM32F100xx microcontrollers where the Flash memory density ranges between 256 and 512 Kbytes.
  • High-density devices are STM32F101xx and STM32F103xx microcontrollers where the Flash memory density ranges between 256 and 512 Kbytes.
  • XL-density devices are STM32F101xx and STM32F103xx microcontrollers where the Flash memory density ranges between 512 and 1024 Kbytes.
  • Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.

© COPYRIGHT 2010 STMicroelectronics

STM32F10x Standard Peripherals Library: Footer

 

 

 

      For complete documentation on STM32(CORTEX M3) 32-bit Microcontrollers platform visit  www.st.com/STM32